

LaserForm® Ni718 (A)

A Nickel-based alloy fine-tuned for use with ProX® DMP 320 metal powder, producing parts for high temperature applications. LaserForm Ni718 (A) has outstanding corrosion resistance in various corrosive environments and excellent cryogenic properties.

LaserForm Ni718 (A) is formulated and fine-tuned specifically for 3D Systems DMP 320 metal 3D Printers to deliver highest part quality and best part properties. The print parameter database that 3D Systems provides together with the material has been extensively developed, tested and optimized in 3D Systems' part production facilities that hold the unique expertise of printing 500,000 challenging production parts year over year. Based on over 1000 test samples the below listed part quality data and mechanical properties give you high planning security. And for a 24/7 production 3D Systems' thorough Supplier Quality Management System quarantees consistent, monitored material quality for reliable process results.

Material Description

LaserForm Ni718 (A) is a nickel-based heat resistant alloy. This precipitation-hardening nickel-chromium alloy is characterized by good tensile, fatigue, creep and rupture strength at temperatures up to 700°C. Moreover it has outstanding corrosion resistance in various corrosive environments as well as excellent cryogenic properties.

These benefits make LaserForm Ni718 (A) ideal for many high temperature applications such as gas turbine parts, instrumentation parts, power and process industry parts etc. Parts can be post-hardened to 40 HRC by precipitation-hardening heat treatments. The parts can be machined, spark-eroded, welded, shot-peened, polished and coated if required.

Classification

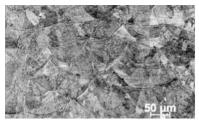
The chemical composition of LaserFormTM Ni718 Type (A) is indicated in the table below in wt% and meets the requirements of ASTM F3055-14a.

Mechanical Properties 1,2,3,4,5

MEACHDEMENT	CONDITION	METRIC			U.S.				
MEASUREMENT	CONDITION	AS BUILT	AFTER STRESS RELIEF	AGED 1	AGED 2	AS BUILT	AFTER STRESS RELIEF	AGED 1	AGED 2
Ultimate Strength (MPa ksi)	ASTM E8M								
Horizontal direction — XY Vertical direction — Z		NA 930 ± 20 ⁵	1120 ± 20⁴ 1130 ± 10⁵	1300 ± 30 ⁴ 1230 ± 20 ⁵	1400 ± 30 ⁴ 1340 ± 20 ⁴	NA 135 ± 3	162 ± 3 164 ± 2	189 ± 5 178 ± 3	203 ± 5 194 ± 3
Yield strength Rp0.2% (MPa ksi)	ASTM E8M								
Horizontal direction — XY Vertical direction — Z		NA 660 ± 20 ⁵	910 ± 20 ⁴ 850 ± 20 ⁵	1010 ± 30 ⁴ 1010 ± 20 ⁵	1230 ± 30 ⁴ 1200 ± 20 ⁴	NA 96 ± 3	132 ± 3 123 ± 3	146 ± 5 146 ± 5	178 ± 5 174 ± 3
Elongation at break (%)	ASTM E8M								
Horizontal direction — XY Vertical direction — Z		NA 36 ± 2 ⁵	24 ±2 ⁴ 31 ± 2 ⁵	21 ± 2 ⁴ 24 ±4 ⁵	15 ± 2 ⁴ 14 ± 2 ⁴	NA 36 ± 2	24 ±2 31 ± 2	21 ± 2 24 ±4	15 ± 2 14 ± 2
Hardness, Rockwell C (HRC)	ASTM E18	20 ± 2	32 ± 1	39 ± 1	40 ± 1	20 ± 2	32 ± 1	39 ± 1	40 ± 1
Impact toughness ² (J/cm ² lb.ft)	ASTM E23	110 ± 6	56 ± 9	44 ± 5	NA	81 ± 5	41 ± 7	32 ± 4	NA

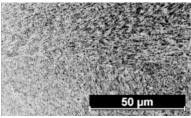
Thermal Properties⁶

MEASUREMENT	CONDITION	METRIC	U.S.
Thermal conductivity (W/(m.K) Btu/(h.ft².°F))	At 21 °C/ 69.8 °F	11,4	6,6
(W/(III.K) Dtd/(II.It : 1))	At 100°C / 212°F	18,3	10,6
Coefficient of Thermal Expansion (µm/m-°C µm/in-°F)	At 200°C / 392°F	13,2	7,31
(μπνπι- C μπνπι- τ)	At 600°C / 1112°F	13,9	7,74
Melting range (°C °F)		1260-1335	2300-2435


- ¹ Parts manufactured with standard parameters on a ProX DMP 320, Config B
- ² Tested with charpy V-notch toughness test, DMV probe
- ³ Values based on average and standard deviation
- ⁴ Tested on ASTM E8M specimen with rectangular cross sections
- ⁵ Tested on ASTM E8M specimen with circular cross sections type 4
- ⁶ Values based on literature

LaserForm® Ni718 (A)

Physical Properties


		METRIC	2	U.S.		
MEASUREMENT	CONDITION	AS BUILT AND AFTER STRESS RELIEF	AFTER HIP	AS BUILT AND AFTER STRESS RELIEF	AFTER HIP	
Density — Relative, based on pixelcount (%)	Optical method	>99,9	≈100	>99,9	≈100	
Density — Absolute theoretical ⁶ (g/cm ³ lb/in ³)	Optical method	8,2		0,296		

Microstructure as built

Surface Quality⁷

MEASUREMENT	М	ETRIC	U.S.			
WEASOREWENT	AS BUILT	SANDBLASTED	AS BUILT	SANDBLASTED		
Surface Roughness — Horizontal direction (XY) (μm μin)	3-5	3-5	120-195	120-195		
Surface Roughness — Vertical direction (Ζ) (μm μin)	5-7	3-5	195-275	120-195		

Microstructure after stress relief

<u>50 μm</u>

Microstructure after aging

Chemical Composition

Al	0.20-0.80		
В	≤0.006		
С	≤0.08		
Co	≤1.00		
Cr	17.00-21.00		
Cu	≤0.30		
Fe	Bal.		
Mn,Si	≤0.35		
Мо	2.80-3.30		
Nb+Ta	4.75-5.50		
Ni	50.00-55.00		
P,S	≤0.015		
Ti	0.65-1.15		
Traces	≤0.001 Pb, Se each		

⁷ Values based on minimum and maximum ranges

www.3dsystems.com

Warranty/Disclaimer: The performance characteristics of these products may vary according to product application, operating conditions, or with end use. 3D Systems makes no warranties of any type, express or implied, including, but not limited to, the warranties of merchantability or fitness for a particular use.

©2017 by 3D Systems, Inc. All rights reserved. Specifications subject to change without notice. 3D Systems, ProX and LaserForm are registered trademarks and the 3D Systems logo is a trademark of 3D Systems, Inc.

PN 10120B 12-17